Abstract

This paper explores sensitivity of RTOS kernels in safety-critical systems. We characterize and analyze the consequences of transient faults on key components of the MicroC kernel, a popular RTOS. We specifically focus on its task scheduling and context switching modules. Classes of fault syndromes specific to safety-critical real-time systems are identified. Results reported in this paper demonstrate that 34% of faults led to scheduling dysfunctions. In addition 17% of faults results in system crashes. This represents an important fraction of faults that cannot be ignored during the design phase of safety-critical applications running under an RTOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.