Abstract

This study investigates the sensitivity of a three-dimensional (3D) indoor ray tracing (RT) model for the use of the uniform theory of diffraction and geometrical optics in radio channel characterizations of indoor environments. Under complex indoor environments, RT-based predictions require detailed and accurate databases of indoor object layouts and the electrical characteristics of such environments. The aim of this study is to assist in selecting the appropriate level of accuracy required in indoor databases to achieve good trade-offs between database costs and prediction accuracy. This study focuses on the effects of errors in indoor environments on prediction results. In studying the effects of inaccuracies in geometry information (indoor object layout) on power coverage prediction, two types of artificial erroneous indoor maps are used. Moreover, a systematic analysis is performed by comparing the predictions with erroneous indoor maps and those with the original indoor map. Subsequently, the influence of random errors on RMS delay spread results is investigated. Given the effect of electrical parameters on the accuracy of the predicted results of the 3D RT model, the relative permittivity and conductivity of different fractions of an indoor environment are set with different values. Five types of computer simulations are considered, and for each type, the received power and RMS delay spread under the same circumstances are simulated with the RT model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call