Abstract

Mine water as a result of meteoric and/or underground water's contact with tailings and underground workings could have an elevated content of metals associated with sulfate, often acidic, due to the bio-oxidation of sulfides. When entering aquatic ecosystems, the mine water can cause significant changes in the species' trophic levels, therefore a treatment is required to adjust the alkalinity and to remove the heavy metals and metalloids. The conventional mine water treatment removes metals, but in many cases it does not reduce the sulfate content. This paper aimed to predict the impact of conventionally treated mine water on the receiving river by assessing the genotoxic activity on an engineered Escherichia coli and by evaluating the toxic effects generated on two Gram-negative bacterial strains, Pseudomonas aeruginosa and Escherichia coli. Although the main chemical impact is the severe increases of calcium and sulfate concentrations, no significant genotoxic characteristics were detected on the Escherichia coli strain and on the cell-viability with a positive survival rate higher than 80%. Pseudomonas aeruginosa was more resistant than Escherichia coli in the presence of 1890 mg SO42-/L. This paper reveals different sensitivities and adaptabilities of pathogenic bacteria to high concentrations of sulfates in mine waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.