Abstract

To measure magnetic resonance imaging (MRI) parameters including relaxation times (T1 ρ, T2 ), magnetization transfer (MT) and diffusion parameters (mean diffusivity [MD], fractional anisotropy [FA]) of intervertebral discs in adolescents with idiopathic scoliosis, and to investigate the sensitivity of these MR parameters to the severity of the spine deformities. Thirteen patients with adolescent idiopathic scoliosis and three control volunteers with no history of spine disease underwent an MRI acquisition at 3T including the mapping of T1 ρ, T2 , MT, MD, and FA. The apical zone included all discs within the scoliotic curve while the control zone was composed of other discs. The severity was analyzed through low (<32°) versus high (>40°) Cobb angles. One-way analysis of variance (ANOVA) and agglomerative hierarchical clustering (AHC) were performed. Significant differences were found between the apical zone and the control zone for T2 (P = 0.047), and between low and high Cobb angles for T2 (P = 0.014) and MT (P = 0.002). AHC showed two distinct clusters, one with mainly low Cobb angles and one with mainly high Cobb angles, for the MRI parameters measured within the apical zone, with an accuracy of 0.9 and a Matthews correlation coefficient (MCC) of 0.8. Within the control zone, the AHC showed no clear classification (accuracy of 0.6 and MCC of 0.2). We successfully performed an in vivo multiparametric MRI investigation of young patients with adolescent idiopathic scoliosis. The MRI parameters measured within the intervertebral discs were found to be sensitive to intervertebral disc degeneration occurring with scoliosis and to the severity of scoliosis. J. Magn. Reson. Imaging 2016;44:1123-1131.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.