Abstract

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.

Highlights

  • Many prokaryotic and eukaryotic organisms have evolved to produce ribonucleoside analogues with antibiotic activity [1,2,3]

  • We introduce a parameter termed the mitovir score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds

  • We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription

Read more

Summary

Introduction

Many prokaryotic and eukaryotic organisms have evolved to produce ribonucleoside analogues with antibiotic activity [1,2,3]. Many of these natural products have been shown to have therapeutic efficacy in the treatment of microbial infections and cancer [1,2,3]. These natural therapeutic ribonucleoside analogues have inspired the design of synthetic analogues for a variety of clinical indications [1,4,5,6,7]. Among classes of agents being pursued as generation HCV inhibitors, ribonucleoside analogues that inhibit viral RNA synthesis subsequent to incorporation of their phosphorylated metabolites into nascent viral RNA by the HCV RNA-dependent RNA polymerase [RdRp; HCV non-structural protein 5B (NS5B)] have emerged as perhaps the most promising due to their pangenotype activity and high barrier to resistance development

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call