Abstract

The laser powder bed fusion process has witnessed a huge interest in recent years since it has the potential to produce challenging shapes in a broad range of applications. The process parameters have a considerable effect on melt pool size and on the development of defect porosity. This paper predicts numerically the effect of a large range of laser beam diameters on melt pool dimensions and on the occurrence of porosity defects such as keyhole. A series of single beads of Inconel IN625 was made using various combinations of beam diameters, scan speeds, and laser powers. The use of a large diameter was more suitable rather than a small diameter as it ensures a large and shallow heat affected zone, thus decreasing the development of the keyhole defect. Our numerical results correlate satisfactorily with experimental finding from literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call