Abstract

In this study, the early stage of European spruce bark beetle (Ips typographus, L.) infestation (so-called green attack) is investigated using Landsat-8 optical and thermal data. We conducted an extensive field survey in June and the beginning of July 2016, to collect field data measurements from several infested and healthy trees in the Bavarian Forest National Park (BFNP), Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal conductance, chlorophyll fluorescence, and water content) were measured. Three Landsat-8 images from May, July, and August 2016 were studied, representing an early stage, advanced stage, and post-infestation, respectively. Spectral vegetation indices (SVIs) sensitive to the measured traits were calculated from the optical domain (VIS, NIR, and SWIR), and canopy surface temperature (CST) was calculated from the thermal infrared band using the mono-window algorithm. The leaf traits were used to examine the impact of bark beetle infestation on the infested trees and to explore the link between these traits and remote sensing data (CST and SVIs). The differences between healthy and infested samples regarding measured leaf traits were assessed using Student’s t test. The relative importance of the CST and SVIs for estimating measured leaf traits was evaluated based on the variable importance in projection (VIP) obtained from the partial least squares regression (PLSR) analysis. A temporal comparison was then made for SVIs with a VIP > 1, including CST, using statistical significance tests. The clustering method using a principal components analysis (PCA) was used to examine visually how well the two groups of sample plots (healthy and infested) are separated in 2-D space based on principal component scores. Finally, linear regression (LR) was used to generate the leaf traits maps using the SVI that have highest VIP score and then used to produce a stress map for the study area. The results revealed that all measured leaf traits were significantly different (p < 0.05) between healthy versus infested samples. Moreover, the study showed that CST was superior to the SVIs in detecting subtle canopy changes due to bark beetle infestation for the three months considered in this study. The results showed that CST is an essential variable for estimating measured leaf traits with VIP > 1, improving the results of clustering when used with other SVIs. Likewise, the stress map produced by CST and leaf traits well presented the infestation areas at the green attacked stage. The new insight offered by this study is that the stress induced by the early stage of bark beetle infestation is more pronounced by Landsat-8 thermal bands than the SVIs calculated from its optical bands. The potential of CST in detecting the green attack stage would have positive implications for forest practice.

Highlights

  • Forests are important ecosystem with economical, social, and ecological values

  • FoMrotdheerfaitresltytsitmrees,sewde assessed the poten89tial of canopy surface temperature (CST) and spectral vegetation indices (SVIs) to discriminate between healthy and green-attacHkeeadlthtryees by European spruce 5b4ark beetle (Ips typographus, L.)

  • According to bark beetle phenology studies, the flight activity of bark beetles and their successful attack on living trees starts in late spring when the air temperature reaches 16.5 °C [9,98]

Read more

Summary

Introduction

Forests are important ecosystem with economical, social, and ecological values. The economic value of timber in a forest is typically threatened by natural disturbances such as fire, drought, wind, snow, and insect or disease outbreaks [1,2]. In Europe, the European spruce bark beetle (Ips typographus, L.) is a common disturbance agent in forests dominated by Norway spruce (Picea abies) [3]. In addition to the negative impact on timber production, bark beetles can have a positive impact on the ecosystem by providing a suitable habitat in the form of opening forest canopy, increasing habitat heterogeneity and biodiversity, all of which enhance the survival of other species [7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call