Abstract

We address the sensitivity of Interferometric Cross-Polarization Microscopy by comparing scattering and absorption by spherical 10 nm nanoparticles through a combination of modeling and experiment. We show that orthogonality of light in the two polarization branches of Cross-Polarization Microscopy ensures that only light that has interacted with a nanoparticle is interferometrically enhanced. As a result background-free shot noise-limited detection is achieved for sub-μW optical powers at the sample. Our modeling in particular shows that in the near-infrared regime, above the plasmon resonance frequency of spherical nanoparticles, the cross-polarization approach is several orders of magnitude more sensitive than conventional extinction based detection. This enhanced near-infrared sensitivity for spherical nanoparticles is promising for applications requiring low absorption and low power imaging of nanoparticles in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call