Abstract

Many forensic genetics problems can be handled using structured systems of discrete variables, for which Bayesian networks offer an appealing practical modeling framework, and allow inferences to be computed by probability propagation methods. However, when standard assumptions are violated--for example, when allele frequencies are unknown, there is identity by descent or the population is heterogeneous--dependence is generated among founding genes, that makes exact calculation of conditional probabilities by propagation methods less straightforward. Here we illustrate different methodologies for assessing sensitivity to assumptions about founders in forensic genetics problems. These include constrained steepest descent, linear fractional programming and representing dependence by structure. We illustrate these methods on several forensic genetics examples involving criminal identification, simple and complex disputed paternity and DNA mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.