Abstract

Abstract Meteorological observations and model simulations are used to show that the catastrophic ice storm of 4–5 December 2002 in the southeastern United States resulted from the combination of a classic winter storm and a warm sea surface temperature (SST) anomaly in the western Atlantic Ocean. At the time of the storm, observations show that the Atlantic SST near the southeastern U.S. coast was 1.0°–1.5°C warmer than its multiyear mean. The impact of this anomalous SST on the ice accumulation of the ice storm was evaluated with the Regional Atmospheric Modeling System. The model shows that a warmer ocean leads to the conversion of more snow into freezing rain while not significantly affecting the inland surface temperature. Conversely, a cooler ocean produces mostly snowfall and less freezing rain. A similar trend is obtained by statistically comparing observations of ice storms in the last decade with weekly mean Atlantic SSTs. The SST during an ice storm is significantly and positively correlated with a deeper and warmer melting layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.