Abstract

Abstract This study investigates the sensitivity of the performance of hydrological models to certain temporal variations of precipitation over the southeastern United States (SEUS). Because of observational uncertainty in the estimates of rainfall variability at subdaily scales, the analysis is conducted with two independent rainfall datasets that resolve the diurnal variations. In addition, three hydrological models are used to account for model uncertainty. Results show that the temporal aggregation of subdaily rainfall can translate into a markedly higher volume error in flow simulated by the hydrological models. For the selected watersheds in the SEUS, the volume error is found to be high (~35%) for a 30-day aggregation in some of the selected watersheds. Hydrological models tend to underestimate flow in these watersheds with a decrease in temporal variability in precipitation. Furthermore, diminishing diurnal amplitude by removing subdaily rainfall corresponding to times of climatological daily maximum and minimum has a detrimental effect on the hydrological simulation. This theoretical experiment resulted in the underestimation of flow, with a disproportionate volume error (of as high as 77% in some watersheds). Observations indicate that over the SEUS variations of diurnal variability of rainfall explain a significant fraction of the seasonal variance throughout the year, with especially strong fractional variance explained in the boreal summer season. The results suggest that, should diurnal variations of precipitation get modulated either from anthropogenic or natural causes in the SEUS, there will be a significant impact on the streamflow in the watersheds. These conclusions are quite robust since both observational and model uncertainties have been considered in the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call