Abstract
The State of Texas has historically faced hurricane-related damage episodes, with Ike being the most recent example. It is expected that, in the future, hurricanes will intensify due to climate change causing greater surges, while the attenuating effect of wetlands on storm surges will also be modified due to sea level rise changes in wetland vegetation type and spatial location. Numerical analysis of storm surges is an important instrument to predict and simulate flooding extent and magnitude in coastal areas. Most operational surge models account for the influence of wetlands and other vegetation by momentum loss due to friction at the bottom and by reduction of imposed wind stress. A coupled hydrodynamic model (ADCIRC) and wave model (SWAN) was employed, and wetlands were characterized using Manning's n, surface canopy, and surface roughness. The wetlands parameters were developed from the National Land Cover Dataset (NLCD) 1992 and 2001. The calibrated coupled model for the historical hurricane Bret was used to simulate the storm surge for each scenario. The results for the sensitivity analyses comparing the scenarios with parameters developed from NLCD datasets with four hypothetical scenarios considering very high and low Manning's n and wind stress (surface canopy) values showed that, for areas inside Nueces Bay, the storm surge high could vary up to four times depending on the parameter selection, for areas inside Corpus Christi Bay, the storm surge high varied around three times and behind the barrier island the storm surge high variation was less than three times. This study is a first step for an evaluation of the impact that sea level rise, climate changed wetlands, wetlands restoration, land use change, and wetlands degradation have on hurricane related surge elevation and extent in the city of Corpus Christi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.