Abstract

Head-related transfer functions (HRTFs) for human subjects in anechoic space were modeled with modified phase spectra, including minimum-phase-plus-delay, linear-phase, and reversed-phase-plus-delay functions. The overall (wide-band) interaural time delay (ITD) for the modeled HRTFs was made consistent with that of the empirical HRTFs by setting the position-dependent, frequency-independent delay in the HRTF for the lagging ear. Signal analysis of the minimum-phase-plus-delay reconstructions indicated that model HRTFs deviate from empirical HRTF measurements maximally for contralateral azimuths and low elevations. Subjects assessed the perceptual validity of the model HRTFs in a four-interval, two-alternative, forced-choice discrimination paradigm. Results indicate that monaural discrimination performance of subjects was at chance for all three types of HRTF models. Binaural discrimination performance was at chance for the linear-phase HRTFs, was above chance for some locations for the minimum-phase-plus-delay HRTFs, and was above chance for all tested locations for the reversed-phase-plus-delay HRTFs. An analysis of low-frequency timing information showed that all of these results are consistent with efficient use of interaural time differences in the low-frequency components of the stimulus waveforms. It is concluded that listeners are insensitive to HRTF phase spectra as long as the overall ITD of the low-frequency components does not provide a reliable cue. In particular, the minimum-phase-plus-delay approximation to the HRTF phase spectrum is an adequate approximation as long as the low-frequency ITD is appropriate. These results and conclusions are all limited to the anechoic case when the HRTFs correspond to brief impulse responses limited to a few milliseconds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.