Abstract
Several anti-human glioma cytotoxic conjugates were studied in vitro. Monoclonal antibodies (MAbs) to the GE2 glioma-associated antigen (anti-GE 2) and MAbs to HLA-DR antigens (D1/12) or human diferric transferrin (Tfn) were linked to the potent cytotoxin ricin (anti-GE 2-ricin) or to its A subunit (anti-GE 2-RTA, D1/12-RTA, Tfn-RTA). Anti-GE 2-RTA had low cytotoxic activity in both the absence and the presence of lysosomotropic substances inhibiting intracellular degradation. Anti-GE 2-ricin was about 1,000 times more toxic than RTA alone, but showed only 14-fold target specificity. D1/12-RTA was about 20 times more toxic than RTA and its cytotoxic effect increased about 6- to 7-fold when cell-surface HLA-DR antigen expression was enhanced by IFN-gamma treatment. Human diferric Tfn linked to RTA demonstrated the highest cytotoxic activity, being about 5,000 times more toxic than RTA alone for glioma cells and about 6,000 times more toxic for Jurkat cells in the presence of the carboxylic ionofore monensin. Ricin toxin was only about 5 times more toxic for Jurkat and glioma cells than Tfn-RTA-monensin. Tfn-RTA was over 100,000 times more potent than the chemotherapeutic agent BCNU in reducing glioma cell survival in vitro. Addition of 80% human pooled cerebrospinal fluid (CSF) reduced Tfn-RTA toxicity about 10-fold. Kinetics of Tfn-RTA cytotoxicity at non-saturating concentrations indicated that over 80% of target cells could be killed within 8-10 hr in the absence and within 10-12 hr in the presence of human pooled CSF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.