Abstract

We investigate the horizontal flow produced by source–sink forcing in a stably stratified fluid. The forcing jets are kept laminar and are placed along the boundary of a square domain. We find that the resultant flow patterns are extremely sensitive to the forcing geometry. The single dominant vortex pattern, interpreted as the result of inverse energy cascade of two-dimensional turbulence in our previous work (Boubnov, Dalziel & Linden 1994), turns out to be a special case. We show that some of the steady patterns resemble the eigenmodes of the Helmholtz equation as the inviscid vorticity equation. Although there are significant discrepancies in the streamfunction vs. vorticity relations between the observed flows and the analytical solutions, we identify the differences as a result of viscous diffusion of vorticity from the source flows. We also study the transition from forced to decaying flow. The flow assumes the properties of Stokes flow at quite large Reynolds number, indicating transformation into patterns with small advective acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.