Abstract

This study examines the impact of ice formation and growth processes on freezing drizzle formation in stably stratified clouds. In particular we investigate the reason why freezing drizzle is rarely observed in clouds with top temperatures less than −15 °C. We also investigate the sensitivity of freezing drizzle formation to the Hallett Mossop secondary ice process (Hallet and Mossop, 1974). The evaluation is performed by simulating cloud formation over a two-dimensional idealized mountain using a detailed microphysical scheme. The height and width of the two-dimensional mountain were designed to produce an updraft pattern with extent and magnitude similar to documented freezing drizzle cases. The simulations show that: (i) drizzle formation is very sensitive to the ice crystal concentration, with a significant reduction in the area over which drizzle forms and the maximum drizzle water content as the cloud top temperature decreases below −10 °C, and (ii) secondary ice crystal formation has a significant effect on drizzle formation at cloud top temperatures below −10 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.