Abstract
Ancient Mars likely hosted oceans similar to those on Earth; however, such water is not presently observed on Mars. One possible explanation for the lack of present-day oceans is that surface water was transported into and stored within the interior of Mars throughout the geological history. As water can influence the rheological structure of the Martian lithosphere, we investigated the sensitivity of the elastic thickness of the lithosphere to water using recent laboratory data. Calculations indicate that the presence of water results in a significant decrease in elastic thickness relative to dry conditions at a given thermal structure. Gravity and topographic data acquired by the Mars Global Surveyor and other orbiters indicate a temporal change in elastic thickness during the geological history of Mars. The extremely thin elastic layer during the planet’s early history can be explained by a water-rich rheological model, whereas a dry rheology can account for the relatively thick elastic layer inferred during the later evolution of Mars. Although thermal evolution of Mars has a large uncertainty, the strong sensitivity of elastic lithospheric thickness to water suggests possible sequestered water into deeper levels during the early history of Mars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.