Abstract

The aim of the present study was to determine the apparent diffusion boundary layer and dissolution rate constant for various surfaces of compacts and at various locations in the USP paddle dissolution apparatus. Benzoic acid compacts were coated with paraffin wax leaving only the surface under investigation free for dissolution. The dissolution rates for various surfaces at varying locations in the paddle dissolution vessel were determined from the slope of the dissolution profile (amount dissolved (mg) versus time (min)). The apparent diffusion boundary layer and dissolution rate constant were calculated and were found to vary depending on the surface of the compact from which dissolution took place and also on the location and size of the compact. It may be concluded that, in developing models to describe the dissolution from solid dosage forms, it is not accurate to assume constant hydrodynamics and mass transfer rates at all surfaces of the system, or in different locations within the test device. A more exact description of the hydrodynamics would be necessary in order to precisely model drug dissolution in the paddle dissolution apparatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call