Abstract

Bilateral cochlear implant users have poor sensitivity to interaural time differences (ITDs) of high-rate pulse trains, which precludes use of these stimuli to convey fine-structure ITD cues. However, previous reports of single-neuron recordings in cats demonstrated good ITD sensitivity to 1000 pulses-per-second (pps) pulses when the pulses were sinusoidally amplitude modulated. The ability of modulation to restore ITD sensitivity to high-rate pulses in humans was tested by measuring ITD thresholds for three conditions: ITD encoded in the modulated carrier pulses alone, in the envelope alone, and in the whole waveform. Five of six subjects were not sensitive to ITD in the 1000-pps carrier, even with modulation. One subject's 1000-pps carrier ITD sensitivity did significantly improve due to modulation. Sensitivity to ITD encoded in the envelope was also measured as a function of modulation frequency, including at frequencies from 4 to 16 Hz where much of the speech envelope's energy and information resides. Sensitivity was best at the modulation frequency of 100 Hz and degraded rapidly outside of a narrow range. These results provide little evidence to support encoding ITD in the carrier of current bilateral processors, and suggest envelope ITD sensitivity is poor for an important segment of the speech modulation spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call