Abstract

This study aims to quantify the effect of salt and acid preliminary exposure on acid resistance of vegetative cells of Bacillus weihenstephanensis. The psychrotolerant strain KBAB4 was cultured until the mid-exponentially phase (i) in BHI, (ii) in BHI supplemented with 2.5% salt or (iii) in BHI acidified at pH 5.5 with HCl. The growing cells were subsequently inactivated in lethal acid conditions ranging from 4.45 to 4.70. Based on statistical criteria, a primary mixed-Weibull model was used to fit the acid inactivation kinetics. The acid resistance was enhanced for acid-adapted cells and decreased for salt-adapted cells. The secondary modelling of the bacterial resistance allowed the quantification of the change in pH leading to a ten folds variation of the bacterial resistance, i.e. cells sensitivity (zpH). This sensitivity was not significantly affected whatever the preliminary mild exposure and the presence of sub-populations with different acid resistances. These results highlighted that pre-incubation conditions influence bacterial acid resistance without affecting the sensitivity to acidic modifications, with a 10 fold reduction of Bacillus acid resistance observed for a reduction of 0.37 pH unit. Quantification of such adaptive stress response might be instrumental in quantitative risk assessment more particularly in food formulation, particularly for low-acid minimally processed foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call