Abstract

Our ability to properly simulate current climate and its future change depends upon the exactitude of the physical processes that are parameterized on the one hand, and on model configuration on the other hand. In this paper, we focus on the latter and investigate the effect of the horizontal grid resolution on the simulation of a month of January over the Arctic. A limited-area numerical climate model is used to simulate the month of January 1990 over a grid that includes the Arctic and sub-Arctic regions. Two grid resolutions are used: 50 km and 100 km. Results show that finer details appear for regional circulation, temperature, and humidity when increasing horizontal resolution. This is particularly true for continental and sea ice boundaries, which are much better resolved by high-resolution model simulations. The Canadian Archipelago and rivers in northern Russia appear to benefit the most from higher horizontal resolution. High-resolution simulations capture some frozen rivers and narrow straits between islands. Therefore, much colder surface air temperature is simulated over these areas. Precipitation is generally increased in those areas and over topography due to a better representation of surface heterogeneities when increasing resolution. Large-scale atmospheric circulation is substantially changed when horizontal resolution is increased. Feedback processes occur between surface air temperature change over heterogeneous surfaces and atmospheric circulation. High-resolution simulations develop a stronger polar vortex. The mean sea-level pressure increases over the western Arctic and Iceland and decreases over the eastern Arctic. This circulation leads to a substantial cooling of the eastern Arctic and enhanced synoptic activity over the Arctic associated with an intensification of the baroclinic zone. Aerosol mass loading, which is simulated explicitly in this model, is significantly altered by the grid resolution change with the largest differences in aerosol concentration over areas where precipitation and atmospheric circulation are the most affected. The implications of this sensitivity study to the evaluation of indirect radiative effects of anthropogenic aerosols are discussed. Copyright © 2005 Royal Meteorological Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call