Abstract

The new compounds [Ru(acac)2(BIAN)], BIAN = bis(arylimino)acenaphthene (aryl = Ph (1a), 4-MeC6H4 (2a), 4-OMeC6H4 (3a), 4-ClC6H4 (4a), 4-NO2C6H4 (5a)), were synthesized and structurally, electrochemically, spectroscopically, and computationally characterized. The α-diimine sections of the compounds exhibit intrachelate ring bond lengths 1.304 Å < d(CN) < 1.334 and 1.425 Å < d(CC) < 1.449 Å, which indicate considerable metal-to-ligand charge transfer in the ground state, approaching a Ru(III)(BIAN(•-)) oxidation state formulation. The particular structural sensitivity of the strained peri-connecting C-C bond in the BIAN ligands toward metal-to-ligand charge transfer is discussed. Oxidation of [Ru(acac)2(BIAN)] produces electron paramagnetic resonance (EPR) and UV-vis-NIR (NIR = near infrared) spectroelectrochemically detectable Ru(III) species, while the reduction yields predominantly BIAN-based spin, in agreement with density functional theory (DFT) spin-density calculations. Variation of the substituents from CH3 to NO2 has little effect on the spin distribution but affects the absorption spectra. The dinuclear compounds {(μ-tppz)[Ru(Cl)(BIAN)]2}(ClO4)2, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; aryl (BIAN) = Ph ([1b](ClO4)2), 4-MeC6H4 ([2b](ClO4)2), 4-OMeC6H4 ([3b](ClO4)2), 4-ClC6H4 ([4b](ClO4)2), were also obtained and investigated. The structure determination of [2b](ClO4)2 and [3b](ClO4)2 reveals trans configuration of the chloride ligands and unreduced BIAN ligands. The DFT and spectroelectrochemical results (UV-vis-NIR, EPR) indicate oxidation to a weakly coupled Ru(III)Ru(II) mixed-valent species but reduction to a tppz-centered radical state. The effect of the π electron-accepting BIAN ancillary ligands is to diminish the metal-metal interaction due to competition with the acceptor bridge tppz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.