Abstract

Abstract Riparian large woody debris (LWD) recruitment simulations have traditionally applied a random angle of tree fall from two well-forested stream banks. We used a riparian LWD recruitment model (CWD, version 1.4) to test the validity of these assumptions. Both the number of contributing forest banks and predominant tree fall direction significantly influenced simulated riparian LWD delivery, but there was no apparent interaction between these factors. Pooled across all treatments, the average predicted 300-year cumulative LWD recruitment was 77.1 m3/100 m reach with both banks forested compared to 49.3 m3/100 m reach when only one side was timbered. Total recruitment within bank cover categories (one versus both forested) depended on the directionality of the falling stem. When only one bank was forested, the CWD model predicted the same riparian LWD recruitment for the random and CWD default tree fall patterns (∼39 m3/100 m reach), the pattern biased toward the channel yielded twice this volume, a pattern quartering toward the channel produced 64% more LWD, and the pattern paralleling the channel contributed almost 30% less than random. With both banks forested, the random, default, and quartering simulations resulted in similar delivery (about 78 m3/100 m reach), the pattern biased toward the channel contributed almost 14% more LWD, and the parallel pattern yielded 26% less. Because CWD is similar in design and operation to other riparian LWD recruitment models, it follows that any simulation of wood delivery to streams should be checked for their consistency with local forest cover and tree failure patterns. West. J. Appl. For. 19(2):117–122.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.