Abstract

Liquid xenon is one of the leading targets to search for dark matter via its elastic scattering on nuclei or electrons. Due to their low-threshold and low-background capabilities, liquid xenon detectors can also detect coherent elastic neutrino–nucleus scattering (CEνNS) or neutrino–electron scattering. In this paper, we investigate the feasibility of a compact and movable liquid xenon detector with an active target mass of O(10∼100) kg and single-electron sensitivity to detect CEνNS from anti-neutrinos from a nuclear reactor. Assuming a single- and few-electron background rate at the level achieved by the XENON10/100 experiments, we expect a 5-σ detection of CEνNS with less than 400 kg-days of exposure. We further investigate the sensitivity of such a detector to neutrino magnetic moment with neutrino electron scattering. If an electronic recoil background rate of 0.01∼0.1 events/keV/kg/day above 1 keV can be achieved with adequate shielding, a liquid xenon detector can reach a neutrino magnetic moment sensitivity of 10−11μB, which would improve upon the current most-constraining laboratory limits from the GEMMA and Borexino experiments. Additionally, such a detector would be able to probe the region compatible with a magnetic moment interpretation of the low-energy excess electronic recoil events recently reported by XENON1T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.