Abstract

Motion vision is one of the fundamental properties of the visual system and is involved in numerous tasks. Previous work has shown that harbor seals are able to perceive visual motion. Tying in with this experimental finding, we assessed the sensitivity of harbor seals to visual motion using random dot displays. In these random dot displays, either all or a percentage of the dots plotted in the display area move into one direction which is referred to as percent coherence. Using random dot displays allows determining motion sensitivity free from form or position cues. Moreover, when reducing the lifetime of the dots, the experimental subjects need to rely on the global motion over the display area instead of on local motion events, such as the streaks of single dots. For marine mammals, the interpretation of global motion stimuli seems important in the context of locomotion, orientation and foraging. The first experiment required the seal to detect coherent motion directed upwards in one out of two stimulus displays and psychophysical motion coherence detection thresholds were obtained ranging from 5% to 35% coherence. At the beginning of the second experiment, which was conducted to reduce the differential flickering of the motion stimulus as secondary cue, the seal was directly able to transfer from coherent motion detection to a discrimination of coherent motion direction, leftward versus rightward. The seal performed well even when the duration of the local motion event was extremely short in the last experiment, in which noise was programmed as random position noise. Its coherence threshold was determined at 23% coherence in this experiment. This motion sensitivity compares well to the performance of most species tested so far excluding monkeys, humans and cats. To conclude, harbor seals possess an effective global motion processing system. For seals, the interpretation of global and coherent motion might e. g. play a role in the interpretation of optic flow information or when breaking the camouflage of cryptic prey items.

Highlights

  • The ability to see motion is one of the most basic and one of the most important functions of the visual system.Many adaptive behaviors depend on the detection of motion or the extraction of motion information from a scene (Nakayama 1985)

  • At the beginning of the second experiment, which was conducted to reduce the differential flickering of the motion stimulus as secondary cue, the seal was directly able to transfer from coherent motion detection to a discrimination of coherent motion direction, leftward versus rightward

  • Continuing this line of research, we report results of experiments, in which we used underwater projections of moving random dots to investigate the sensitivity of harbor seals (Phoca vitulina) to global motion

Read more

Summary

Introduction

The ability to see motion is one of the most basic and one of the most important functions of the visual system.Many adaptive behaviors depend on the detection of motion or the extraction of motion information from a scene (Nakayama 1985). Motion vision plays a crucial role in depth perception, image segmentation, eye movement control or the perception of moving objects such as predators or prey. It does not come as a surprise to find motion vision to be a ubiquitous ability in the animal kingdom. Albert-Einstein-Str. 3, 18059 Rostock, Germany with the help of optokinetic eye movements (Hanke et al.2008). Continuing this line of research, we report results of experiments, in which we used underwater projections of moving random dots to investigate the sensitivity of harbor seals (Phoca vitulina) to global motion. This study is the first to determine coherent motion detection and coherent motion direction discrimination thresholds in a marine mammal

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.