Abstract

Anisotropic attenuation in fluid-saturated reservoirs with high fracture density may be diagnostic for reservoir characterization. Wave-induced mesoscale fluid flow is considered to be the major cause of intrinsic attenuation at exploration seismic frequencies. We perform tests of the sensitivity, of anisotropic attenuation and velocity, to reservoir properties in fractured HTI media based on the mesoscale fluid flow attenuation mechanism. The viscoelastic T-matrix, a unified effective medium theory of global and local fluid flow mechanisms, is used to compute frequency-dependent anisotropic attenuation and velocity for ranges of reservoir properties, including fracture density, orientation, fracture aspect ratio, fluid type, and permeability. The 3D 3C staggered-grid finite-difference anisotropic viscoelastic modeling with a Crank-Nicolson scheme is used to generate seismograms using the frequency-dependent velocity and attenuation computed by the viscoelastic T-matrix. A standard linear solid model relates the stress and strain relaxation times to the frequency-dependent attenuation, in the relaxation mechanism equation. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Velocity becomes more sensitive to the fracture aspect ratio when considering fluid flow compared with when the fluid is isolated. Anisotropy of attenuation affects 3C viscoelastic seismic data more strongly than velocity anisotropy does. Analysis of the influence of reservoir properties, on seismic properties in mesoscale fluid-saturated fractured reservoirs with high fracture density, suggests that anisotropic attenuation is a potential tool for reservoir characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.