Abstract
An radiofrequency identification (RFID)-based folded patch antenna has been developed as a novel passive wireless sensor to measure surface strain and crack, for the structural health monitoring of metallic structures. Up to 2.5 m of read range is achieved by a proof-of-concept prototype patch antenna sensor with a strain sensitivity around −760 Hz/ $\mu \varepsilon $ , which is equivalent to a normalized strain sensitivity of −0.74 ppm/ $\mu \varepsilon $ . In this paper, we propose to consider the change of the substrate dielectric constant due to strain when modeling the antenna sensor. An enhanced strain sensitivity model is introduced for more accurately estimating the strain sensing performance of the hereby introduced smart skin antenna sensor. Laboratory experiments are carried out to quantify the dielectric constant change under strain. The measurement results are incorporated into a mechanics–electromagnetics coupled simulation model. Accuracy of the multi-physics coupled simulation is improved by integrating dielectric constant change in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.