Abstract

A surface plasmon polariton (SPP) is composed of collective electron oscillations that confine optical energies in nanoscale beyond the diffraction limit. This advantage of SPPs has promoted the development of high-density optoelectronic integrated circuits (OEICs) using SPPs. Schottky-type plasmonic detectors have attracted particular attention, because these devices show sensitivity in the telecommunications wavelength range and can be integrated into Si-based electronic circuits with a simple fabrication process. We have developed an Au/Si Schottky-type plasmonic detector with nano slits that excites SPPs at the Au/Si interface. In this report, we demonstrate a novel nano-slit arrangement that provides a sensitivity improvement for the detector. Using the finite-difference time-domain method, we have shown that the highest electric field intensity in the SPP mode on the Au/Si interface is generated by positioning slits with twice the pitch of the SPP wavelength at the Au/Si interface. Using this slit pitch, a weaker SPP mode intensity on the air/Au interface and a stronger SPP mode intensity at the Au/Si interface have also been confirmed. Nano slits with different slit pitches were formed in the Au film of the detector, and the slit pitch dependence of the photocurrent was measured. The experimental results showed similar tendencies to the simulation results. This novel nano-slit arrangement can provide an efficient plasmonic detector for future high-speed data processing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.