Abstract

For the first time, we conduct the structure optimization of the micro thermal convective accelerometer (MTCA). Firstly, the effects of sensor size (L), the location of detectors (D) and the cover height (H) on the performance are deeply analyzed by means of the proposed theoretical model. Six types of micro thermal convective accelerometers with parallel-stack detectors are fabricated by means of the CMOS compatible fabrication process to enhance the sensitivity. Both the theoretical and experimental results demonstrated that larger sensor size and cover height could improve the sensitivity of MTCA. Additionally, increasing sensor size would lead to a shift of the normalized optimal distance to the heater side. By means of the structure optimization and the parallel-stack method with three pairs of detectors, a MTCA with the sensor length of 1600μm is achieved with an outstanding sensitivity of 7075μV/g (gain=1) and normalized sensitivity/power (S/P) ratio of 201.4 μV/g/mW, which is twenty-fold larger than the state of art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.