Abstract

11019 Background: PIK3CA is mutated in up to 30% of breast cancers. Classically somatic mutations are identified by Sanger sequencing of the primary tumor specimen. However third generation droplet digital PCR technologies offer a novel platform for quantitative mutation detection with improved sensitivity. Methods: Thirty stage I-III breast cancer patients were consented on an IRB-approved prospective repository study at Johns Hopkins for collection of their primary breast tumor specimen. Formalin-fixed paraffin embedded (FFPE) samples were analyzed by standard sequencing for three PIK3CA hotspot mutations. The DNA from these samples was then analyzed using the RainDrop digital PCR platform with TaqMan probes in a triplex format to simultaneously detect and quantitate hotspot mutations and genome equivalents. Results are expressed as a percentage of mutant to wild-type PIK3CA molecules for each sample. Results: Standard sequencing of all tumors (n=30) identified seven PIK3CA Exon 20 mutations (H1047R) and three Exon 9 mutations (E545K). Samples were scored as PIK3CA mutation positive by digital PCR if the tumor DNA contained at least 5% mutant molecules. All ten mutations identified by sequencing were verified by digital PCR with quantities of mutant molecules ranging from 20.3-55.6% in a given sample. Digital PCR identified additional PIK3CA mutations that were wild type by standard sequencing including three mutant Exon 20 samples, two mutant Exon 9 samples and one sample with an Exon 20 and Exon 9 mutation. Quantities of mutant molecules in these additional samples ranged from 5-28.9%. Conclusions: RainDrop digital PCR offers improved sensitivity and quantification for detecting PIK3CA mutations in FFPE samples using nanograms of DNA. Additional mutations identified by digital PCR may reflect genetic heterogeneity or possibly tissue contamination. The clinical utility of identifying a small proportion of mutations is unknown but may impact eligibility for targeted therapies and clinical trials. Ongoing studies will also address whether the identification of solid tumor mutations in circulating cell-free plasma DNA by digital PCR can improve diagnostics and aid in therapeutic decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.