Abstract

For the Last Glacial Maximum, (LGM; 21 000 BP), simulations using atmospheric general-circulation models (AGCMs) are very sensitive to the prescribed boundary conditions. Most of the recent numerical experiments have used the CLIMAP (1981) data set for ice-sheet topography, sea-ice extent and sea surface temperatures (SSTs). To demonstrate the impact of ice-sheet reconstruction on the LGM climate, we performed two simulations: one using CLIMAP (1981) ice-sheet topography, the other using the new reconstruction provided by Peltier. We show that, although the geographical structure of the annually averaged temperature is not modified, there are important seasonal and regional impacts on the temperature distribution. In a second step, to analyze the effects of cooler SSTs and sea-ice extent, we performed a simulation using CLIMAP (1981) for the ice-sheet topography, but with present SSTs. We find that the cooling due to ice sheets for the LGM climate is one-third of the global annually averaged cooling, and dial the southward shift of the North Atlantic low in winter is not due to sea-ice extent, but is an orographic effect due to the Laurenride ice sheet. This set of sensitivity experiments allows us also to discriminate between thermal and orographic forcings and to show the impact of the ice-sheet topography and cooler SSTs on the pattern of planetary waves during the LGM climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.