Abstract

Abstract. Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF) model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the intensity of the Vb cyclones, measured as a gradient in the 850 hPa geopotential height field around the cyclone centre, indicates that an upper bound for intensity might be reached for the most intense Vb event.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.