Abstract

A surface plasmon resonance (SPR) sensor based on continuous film metallic gratings is numerically investigated for enhance sensitivity. The results calculated by rigorous coupled-wave analysis (RCWA) present that interplays between localized surface plasmons and surface plasmons polaritons contribute to sensitivity enhancement. The sensitivity enhancement factor (SEF), which represents the influence of metallic grating, increased as the grating period decreased. In addition, several reflection dips can be achieved as the period of metallic grating increased. By double-dips method, the sensitivity SPR sensor based on continuous film grating-based is improved into 153.23°/RIU, which is more sensitive than conventional thin film-based SPR sensor in the same condition. The SPR sensor based on continuous film metallic gratings exhibits good linearity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call