Abstract

A new gold film-molybdenum disulfide (MoS2)-hexagonal boron nitride (h-BN) three-layer sensing structure is reported for sensing applications. The strong photoelectric conversion of MoS2 and the wide forbidden band of h-BN are used to enhance the surface plasmon resonance of the gold film which greatly enhance the sensitivity of the sensor. The Au film was deposited on the optical fiber by controlled vacuum sputtering to monitor the thickness. The MoS2 nanolayer was deposited on the surface of the gold film by electrostatic adsorption and the hexagonal boron nitride nanolayer was subsequently superimposed to complete the preparation. The sensitivity of the prepared sensor was increased to 3803.0 nm/RIU, which is 71.5% higher than for the common gold film sensor. These results confirmed that this approach significantly upgraded the sensor performance. The newly proposed SPR sensor performed well using a simple structure, is low-cost, offers high accuracy and favorable specificity, and may be used for small molecule detection for medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.