Abstract
Optofluidic sensors, which tightly bridge photonics and micro/nanofluidics, are superior candidates in point-of-care testing. A fiber-based interferometric optofluidic (FIO) sensor can detect molecular biomarkers by fusing an optical microfiber and a microfluidic tube in parallel. Light from the microfiber side coupled to the microtube leads to lateral localized light-fluid evanescent interaction with analytes, facilitating sensitive detection of biomolecules with good stability and excellent portability. The determination of the sensitivity with respect to the interplay between light and fluidics, however, still needs to be understood quantitatively. Here, we theoretically and experimentally investigate the relationship between refractive index (RI) sensitivity and individual geometrical parameters to determine the lateral localized light-fluid evanescent interaction. Theoretical analysis predicted a sensitive maximum, which could be realized by synergically tuning the fiber diameter d and the tube wall thickness t at an abrupt dispersion transition region. As a result, an extremely high RI sensitivity of 1.6×104 nm/RIU (σ=4074 nm/RIU), an order of magnitude higher than our previous results, with detection limit of 3.0×10-6 RIU, is recorded by precisely governing the transverse geometry of the setup. The scientific findings will guide future exploration of both new light-fluid interaction devices and biomedical sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.