Abstract

Terahertz (THz) radiation has attracted wide attention in recent years due to its non-destructive properties and ability to sense molecular structures. In applications combining terahertz radiation with metamaterial technology, the interaction between the terahertz radiation and the metamaterials causes resonance reactions; different analytes have different resonance performances in the frequency domain. In addition, a microfluidic system is able to provide low volume reagents for detection, reduce noise from the environment, and concentrate the sample on the detection area. Through simulation, a cruciform metamaterial pattern was designed; the proportion, periodicity, and width of the metamaterial were adjusted to improve the sensing capability of the chip. In the experiments, the sensing capabilities of Type A, B, and C chips were compared. The Type C chip had the most significant resonant effect; its maximum shift could be increased to 89 GHz. In the probiotic experiment, the cruciform chip could have a 0.72 GHz shift at a concentration of 0.025 mg/50 μL, confirming that terahertz radiation combined with a metamaterial microfluidic chip can perform low-concentration detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.