Abstract

Transducer components are crucial in optimizing the sensitivity of microphones. Cantilever structure is commonly used as a structural optimization technique. Here, we present a novel Fabry-Perot (F-P) interferometric fiber-optic microphone (FOM) using a hollow cantilever structure. The proposed hollow cantilever aims to reduce the effective mass and spring constant of the cantilever, thereby enhancing the sensitivity of the FOM. Experimental results demonstrate that the proposed structure outperforms the original cantilever design in terms of sensitivity. The sensitivity and minimum detectable acoustic pressure level (MDP) can reach 91.40 mV/Pa and 6.20 µPa/Hz at 1.7 kHz, respectively. Notably, the hollow cantilever provides an optimization framework for highly sensitive FOMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call