Abstract

This paper presents the sensitivity characteristics of a microelectromechanical systems (MEMS) piezoresistive cantilever and nanohole array used in a waterproof airflow sensor. Previously, a Pitot tube-type waterproof airflow sensor was developed for seabird biologging. Built-in MEMS piezoresistive cantilevers are used as the differential pressure sensing elements. The waterproof function is achieved using nanohole arrays via Laplace pressure. However, the mechanism underlying sensitivity reduction when nanohole arrays are attached is unclear. Here, we experimentally and theoretically verified that the specific constant, which determines the airflow rate through the cantilever and nanohole array, affects sensitivity reduction. An airflow sensor with a small sensitivity reduction was achieved based on the calculated results using appropriate cantilever and nanohole arrays. We demonstrated that the proposed method for estimating sensitivity reduction is useful for designing waterproof airflow sensors using cantilever-type differential pressure sensor elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call