Abstract

With inherent algorithmic error resilience of deep neural networks (DNNs), supply voltage scaling could be a promising technique for energy efficient DNN accelerator design. In this paper, we present an error resilient technique to enable aggressive voltage scaling by exploiting the asymmetric error resilience (sensitivity) with respect to DNN layers, filters, and channels. First-order Taylor expansion is used to evaluate the filter/channel-level weight sensitivities of large scale DNNs which accurately approximates weight sensitivities from actual error injection simulations. We also present the heterogeneous multiply-accumulate (MAC) unit based design approach where some of the MAC units are designed larger with shorter critical path delays for robustness to aggressive voltage scaling while other MAC units are designed relatively smaller. The sensitivity variations among filter weights can be leveraged to design DNN accelerator such that the computations with more sensitive weights are assigned to more robust (larger) MAC units while the computations with less sensitive weights are assigned to less robust (smaller) MAC units. Using dynamic programming, the sizes of MAC units are selected to achieve best DNN accuracy under ISO area constraint. As a result, the proposed voltage scalable DNN accelerator can achieve 34% energy savings in post layout simulations using 65 nm CMOS process with ImageNet dataset using ResNet-18 compared to state-of-the-art timing error recovery technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.