Abstract

Large discrepancies can occur between building energy performance simulation (BEPS) outputs and reference data. Uncertainty and sensitivity analyses are performed to discover the significant contributions of each input parameter to these discrepancies. Variance-based sensitivity analyses typically require many stochastic simulations, which is computationally demanding (especially in the case of the large number of input parameters involved in the analysis). To overcome these impediments, this study proposes a reliable meta-model-based sensitivity analysis, including validation, Morris’ method, multivariate adaptive regression splines (MARS) meta-modeling, and Sobol’ method, to identify the most influential input parameters on BEPS prediction (annual energy consumption) at the early building design process. A hypothetical building is used to analyze the proposed methodology. Six statistical metrics are applied to verify and quantify the accuracy of the model. It is concluded that the cooling set-point temperature and g-value of the window are the most influential input parameters for the analyzed case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.