Abstract

According to international guidelines, parametric methods must be chosen for RI construction when the sample size is small and the distribution is Gaussian. However, normality tests may not be accurate at small sample size. The purpose of the study was to evaluate normality test performance to properly identify samples extracted from a Gaussian population at small sample sizes, and assess the consequences on RI accuracy of applying parametric methods to samples that falsely identified the parent population as Gaussian. Samples of n = 60 and n = 30 values were randomly selected 100 times from simulated Gaussian, lognormal, and asymmetric populations of 10,000 values. The sensitivity and specificity of 4 normality tests were compared. Reference intervals were calculated using 6 different statistical methods from samples that falsely identified the parent population as Gaussian, and their accuracy was compared. Shapiro-Wilk and D'Agostino-Pearson tests were the best performing normality tests. However, their specificity was poor at sample size n = 30 (specificity for P < .05: .51 and .50, respectively). The best significance levels identified when n = 30 were 0.19 for Shapiro-Wilk test and 0.18 for D'Agostino-Pearson test. Using parametric methods on samples extracted from a lognormal population but falsely identified as Gaussian led to clinically relevant inaccuracies. At small sample size, normality tests may lead to erroneous use of parametric methods to build RI. Using nonparametric methods (or alternatively Box-Cox transformation) on all samples regardless of their distribution or adjusting, the significance level of normality tests depending on sample size would limit the risk of constructing inaccurate RI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.