Abstract

BackgroundThe recent availability of Monte Carlo based independent secondary dose calculation (ISDC) for patient-specific quality assurance (QA) of modulated radiotherapy requires the definition of appropriate, more sensitive action levels, since contemporary recommendations were defined for less accurate ISDC dose algorithms. PurposeThe objective is to establish an optimum action level and measure the efficacy of a Monte Carlo ISDC software for pre-treatment QA of intensity modulated radiotherapy treatments. MethodsThe treatment planning system and the ISDC were commissioned by their vendors from independent base data sets, replicating a typical real-world scenario. In order to apply Receiver-Operator-Characteristics (ROC), a set of treatment plans for various case classes was created that consisted of 190 clinical treatment plans and 190 manipulated treatment plans with dose errors in the range of 1.5–2.5%. All 380 treatment plans were evaluated with ISDC in the patient geometry. ROC analysis was performed for a number of Gamma (dose-difference/distance-to-agreement) criteria. QA methods were ranked according to Area under the ROC curve (AUC) and optimum action levels were derived via Youden’s J statistics. ResultsOverall, for original treatment plans, the mean Gamma pass rate (GPR) for Gamma(1%, 1 mm) was close to 90%, although with some variation across case classes. The best QA criterion was Gamma(2%, 1 mm) with GPR > 90% and an AUC of 0.928. Gamma criteria with small distance-to-agreement had consistently higher AUC. GPR of original treatment plans depended on their modulation degree. An action level in terms of Gamma(1%, 1 mm) GPR that decreases with modulation degree was the most efficient criterion with sensitivity = 0.91 and specificity = 0.95, compared with Gamma(3%, 3 mm) GPR > 99%, sensitivity = 0.73 and specificity = 0.91 as a commonly used action level. ConclusionsISDC with Monte Carlo proves highly efficient to catch errors in the treatment planning process. For a Monte Carlo based TPS, dose-difference criteria of 2% or less, and distance-to-agreement criteria of 1 mm, achieve the largest AUC in ROC analysis

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call