Abstract

PurposeSix-axis force sensors play an important role in civilian and military fields because of their multifunctionality. In the context of sensor structure design, sensitivity and sensitivity isotropy are often considered. This paper aims to study the possible relationship between the sensitivity/sensitivity isotropy and structural parameters of an 8/4–4 parallel six-axis force sensor. A comprehensive evaluation index and structural optimization design scheme are suggested in the end.Design/methodology/approachBased on the conditional number of the Jacobian matrix spectral norm, the sensitivity and sensitivity isotropy of the sensor are derived. Orthogonal experiments are used to determine the degree of primary and secondary factors that have a substantial effect on the sensor characteristics. The relationship between the performance indices and the structural parameters is analyzed by the performance atlas method. The comprehensive evaluation index lays the foundation for the structural optimization design of an 8/4–4 parallel six-axis force sensor.FindingsThe variation in each performance index of the sensor for each of the structural parameters is analyzed, and the structural parameters of the sensor with the desired performance indices can be easily selected from the performance atlases. A comprehensive performance evaluation index with a target value of 1 is proposed, and the overall influence of the structural parameters on the sensor performance index is investigated. A simulation example shows the feasibility of the proposed evaluation index.Originality/valueThe importance of each structural parameter of the 8/4–4 parallel six-axis force sensor is determined through orthogonal experiments in this paper. Relations among the structural parameters meeting the performance indices are derived and shown in the performance atlases. A comprehensive evaluation index is proposed to analyze the overall sensor performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.