Abstract
Hydrogen sulfide (H2S) is a gasotransmitter known to regulate physiological and pathological processes. Abnormal H2S levels have been associated with a range of conditions, including Parkinson's and Alzheimer's diseases, cardiovascular and renal diseases, bacterial and viral infections, as well as cancer. Therefore, fast and sensitive H2S detection is of significant clinical importance. Fluorescent H2S probes hold great potential among the currently developed detection methods because of their high sensitivity, selectivity, and biocompatibility. However, many proposed probes do not provide a gold standard for proper use and selection. Consequently, issues arise when applying the probes in different conditions. Therefore, we systematically evaluated four commercially available probes (WSP‐1, WSP‐5, CAY, and P3), considering their detection range, sensitivity, selectivity, and performance in different environments. Furthermore, their capacity for endogenous H2S imaging in live cells was demonstrated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.