Abstract

Hydrogen sulfide (H2S) is a gasotransmitter known to regulate physiological and pathological processes. Abnormal H2S levels have been associated with a range of conditions, including Parkinson's and Alzheimer's diseases, cardiovascular and renal diseases, bacterial and viral infections, as well as cancer. Therefore, fast and sensitive H2S detection is of significant clinical importance. Fluorescent H2S probes hold great potential among the currently developed detection methods because of their high sensitivity, selectivity, and biocompatibility. However, many proposed probes do not provide a gold standard for proper use and selection. Consequently, issues arise when applying the probes in different conditions. Therefore, we systematically evaluated four commercially available probes (WSP‐1, WSP‐5, CAY, and P3), considering their detection range, sensitivity, selectivity, and performance in different environments. Furthermore, their capacity for endogenous H2S imaging in live cells was demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call