Abstract

Hickory trunk canker (HTC), primarily caused by Botryosphaeria dothidea, is an aggravating disease that threatens an important regional economic tree species of Chinese hickory and few information is available in the control of this disease. Here, the sensitivity of 93 isolates to fludioxonil and the resistance risk were investigated. All the isolates tested were sensitive to fludioxonil and the EC50 ranged from 0.0028 to 0.0569 μg/mL. The tamed fludioxonil-resistant mutants remained highly resistant to fludioxonil even after 10 consecutive transfers to fludioxonil-free PDA plates. As for fitness penalty, the fludioxonil-resistant mutants demonstrated a reduction in conidia production and virulence as well as increased sensitivity to high osmotic stress. While, variations in mycelial growth and responses to SDS and H2O2 were not detected in all the resistant mutants. In addition, the resistant mutants demonstrated positive cross-resistance to iprodione but not to fungicides of other modes of action. Sequential analysis of BdNik1 showed that premature stop codon occurred in all the resistant mutants despite of point mutation (BD16–22R9 and BD16–22R20) or frameshift mutation (BD16–22R8, BD16–22R11 and BD16–22R18). Our study suggested that fludioxonil exhibited excellent inhibition activity on mycelial growth of B. dothidea in vitro, the resistance risk of B. dothidea to fludioxonil should be low to moderate and fludioxonil would be a nice candidate in controlling HTC caused by B. dothidea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.