Abstract

We have measured the quantum efficiency (QE), GHz counting rate, jitter, and noise-equivalent power (NEP) of nanostructured NbN superconducting single-photon detectors (SSPDs) in the visible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-type devices (total area 10×10μm2), operating at 4.2K, exhibit an experimental QE of up to 20% in the visible range and ∼10% at 1.3 to 1.55μm wavelength and are potentially sensitive up to midinfrared (∼10μm) radiation. The SSPD counting rate was measured to be above 2GHz with jitter <18ps, independent of the wavelength. The devices’ NEP varies from ∼10−17W∕Hz1∕2 for 1.55μm photons to ∼10−20W∕Hz1∕2 for visible radiation. Lowering the SSPD operating temperature to 2.3K significantly enhanced its performance, by increasing the QE to ∼20% and lowering the NEP level to ∼3×10−22W∕Hz1∕2, both measured at 1.26μm wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call