Abstract

Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species. We aimed to evaluate forest species' sensitivity and antioxidant response to exposure to subsurface waters contaminated with atrazine, as well the dissipation this herbicide. The experiment was conducted in a greenhouse in a completely randomized design, with three replications and one plant per experimental unit. The treatments were arranged in a 2 × 10 factorial. The first factor corresponded to the presence or absence (control) of the atrazine in the subsurface water. The second factor comprised 10 forest species: Amburana cearensis, Anadenanthera macrocarpa, Bauhinia cheilantha, Enterolobium contortisiliquum, Hymenaea courbaril, Libidibia ferrea, Mimosa caesalpiniifolia, Mimosa tenuiflora, Myracrodruon urundeuva, and Tabebuia aurea. The forest species studied showed different sensitivity levels to atrazine in subsurface water. A. cearensis and B. cheilantha species do not have efficient antioxidant systems to prevent severe oxidative damage. The species A. macrocarpa, E. contortisiliquum, L. ferrea, and M. caesalpiniifolia are moderately affected by atrazine. H. courbaril, M. urundeuva, and T. aurea showed greater tolerance to atrazine due to the action of the antioxidant system of these species, avoiding membrane degradation events linked to the production of reactive oxygen species (ROS). Among the forest species, H. courbaril has the most significant remedial potential due to its greater tolerance and reduced atrazine concentrations in the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.