Abstract

Thermobioconvection boundary layer flow in a suspension of water-based bionanofluid holding both nanoparticles and motile microorganisms past a wedge surface was studied. The governing nonlinear partial differential equations on reference of the Buongiorno model were transformed into a set of coupled nonlinear ordinary differential equations. Shooting technique was then used to solve the transformed nonlinear ordinary differential equations numerically. The solutions were found to be contingent on several values of the governing parameters. As highlighted, the velocity profile as well as the skin friction coefficient was affected by the pressure gradient parameter, the function of the wedge angle parameter. On the other hand, the temperature, nanoparticle concentration, and density of motile microorganism’s distributions together with its corresponding local Nusselt number, local Sherwood number, and local density of the motile microorganisms change with the thermophoresis and Brownian motion parameter and so Lewis number, Schmidt number, and bioconvection Péclet number. An experimental scheme together with sensitivity analysis on the basis of Response Surface Methodology (RSM) was applied to examine the dependency of the response parameters of interest to the input parameters’ change. Obviously, local Nusselt number was more sensitive towards the Brownian motion parameter when the Brownian motion parameter was at 0.2 and 0.3. However local Sherwood number was more sensitive towards the Lewis number for all values of Brownian motion parameter. Compatibility found by comparing results between RSM and shooting technique gave confidence for the model’s accuracy. The findings would provide initial guidelines for future device fabrication. Finally, the numerical results obtained were thoroughly inspected and verified with the existing values reported by some researchers.

Highlights

  • Nanofluid is a term first innovated by Choi and Eastman [1] showing a popular thermal conductivity suspension consisting of nominal 1-100 nm size particles distributed in a conventional base fluid

  • The interest stems from the high thermal conductivity characteristics possessed by nanofluid for heat transfer intensification which results in energy saving

  • Bionanofluid refers to water-based fluid that consists of both nanoparticles and living microorganisms

Read more

Summary

Introduction

Nanofluid is a term first innovated by Choi and Eastman [1] showing a popular thermal conductivity suspension consisting of nominal 1-100 nm size particles distributed in a conventional base fluid. Motivated by the above contributions, the authors intend to investigate the behaviors and properties of a water-based bionanofluid flow over a wedge surface by employing the simplest possible boundary conditions. This investigation is associated with the possible utilization of bionanofluid in designing microfluidic devices such as biosensors for bioapplications. Afterwards, experimental scheme is applied together with sensitivity analysis on the basis of Response Surface Methodology (RSM) to examine the dependency of the local Nusselt number and local Sherwood number on the three governing parameters, namely, Lewis number, thermophoresis parameter, and Brownian motion parameter This action is to assess the validity of the numerical results in order to provide a guideline in device fabrication. To the best of our knowledge, no study has been performed yet for such analysis

Mathematical Formulation
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.