Abstract

The objective of this work is to investigate the effect of operational schemes, reservoir types and development parameters on both the amount of incremental oil produced and CO2 stored in high water cut oil reservoirs during CO2 water-alternating-gas (WAG) flooding by running compositional numerical simulator.The method used is the orthogonal experimental design method to optimize operation parameters, including CO2 slug size, ratio of CO2 slug size to water slug size (WAG ratio), CO2 injection rate, and voidage replacement ratio. The Net Present Value (NPV) was used as an objective function for economic analysis. Various 3-D heterogeneous reservoir models were built to investigate the impact of reservoir types and development parameters on CO2 flooding efficiency and storage capacity.The results indicate that as compared to inverted nine-spot pattern and inverted seven-spot pattern, five-spot pattern is more suitable for CO2 WAG flooding. The earlier water injection is switched to CO2, the more benefit can be obtained. Compared with CO2 injection cost and tax credit per ton of CO2 stored, oil price is considered as the most influential economic parameter on CO2 WAG flooding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.