Abstract

The sensitivity analysis of rigid viscoplastic deformation processes with application to metal preform design optimization is investigated. For viscoplastic constitutive models, the deformation process is path-dependent in nature and thus the sensitivity analysis of the deformation history is formulated in an incremental procedure. To this end, an algorithm is derived on the basis of the time integration scheme used in the primary finite element analysis, where the contact conditions are treated with the penalty method. The discretized equilibrium equations, as well as the time integration equations, are directly differentiated with respect to the design variables. The discrete form of the sensitivity equations is then solved with procedures similar to those used in the direct analysis, where the secant matrix decomposed in the direct analysis can also be utilized at each time instant. Thus the sensitivity of the deformation history is evaluated in a step-wise procedure. The present algorithm can be employed for the optimization of metal forming processes. The accuracy of the proposed sensitivity analysis as well as its applicability are demonstrated by numerical examples with reference to preform design optimization problems, where the aggregate function method is employed for converting the non-smooth Min–max type objective function into a numerically tractable one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.